
7
RELATIONAL DATA
MANAGEMENT AS A BASELINE
FOR UNDERSTANDING THE
DATA GRID

This book uses analogies that are completely unrelated to computer science in order

to drive home a concept. In this chapter, we will use relational data management as a

baseline for introducing distributed data management. We will see that this analogy

is more than just a visualization tool; it is a practical necessity.

Relational data management systems are the prevalent data management systems

in use throughout information technology. They provide levels of service that not

only have we become accustomed to but also have become a necessity for support-

ing the needs and requirements of the business. Therefore, a comparison at both the

physical and functional levels of the two is not only helpful but also required.

We will break down the main components of the comparisons with the objective

of using the parallels between the two data management systems to better under-

stand the data management issues that are particular to the data grid and necessary

in order to maintain the quality of service levels for the business applications

dependent on the data grid.

EVOLUTION OF THE RELATIONAL MODEL

The late 1980s and early 1990s saw a shift away from a centralized compute top-

ology of mainframes and minicomputers and toward a more distributed topology

of client/server technology. As a result, the need for a data management system

to meet the requirements of that topology emerged. This shift could not have

taken place if it were not for the relational data management systems that matured

67

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright# 2005 John Wiley & Sons, Inc.



during the 1970s and 1980s as the data management technology evolved to meet the

new computer client/server topology.
As client/server technology was being adopted by the industry, relational database

companies were educating the general population of managers, architects, and devel-

opers on the characteristics client/server and relational database technologies, how

they are used, and how the business as a whole can benefit from this new and better

way of building systems. At these educational seminars (typically a full-day event

followed by a 3–5-day training course), the most common questions asked would

have less to dowith data management for relational databases than with how these rela-

tional databasesmanaged the physical resource available to them. These questionswere

to be expected; with relational databases, the physical resources are files, disks, and

spindles, and prior to this point, this is how developers kept data viable; they wrote

the file and disk management systems. They understood the lower-function input/
output (I/O) of file and disk management, the importance and difficulty of achieving

efficient disk and spindle management. Less attention was given to the relational data

management and even how to access the data through something called SQL. As

time progressed, relational database technology became mainstream, and attention

shifted away from the engine and how fast it wrote to and read fromdisk andmaintained

indices. More concern was directed toward the relational model, with management,

access, and administration of these systems as the key to performance and reliability.

Issues such as table-level locking, row-level locking, event-driven triggers, and the abil-

ity for complex indexing and relating tables, were the domain of the specialist.

Today, with the emergence of a highly distributed compute environments such as

the grid, most developers are focusing on the engine. What is the engine, and how

does it manage the fiscal resource, whether that resource is routing queries to a het-

erogeneous variety of data sources (databases, file systems, queuing systems, etc.) or

is a distributed cache. Absent are the questions related to data management or the

effort required simply to manage and maintain the same levels of service quality

offered by traditional relational data systems.

We will highlight the two main components of a distributed data management

system: the engine and the data management functions.

PARALLELS TO DATA MANAGEMENT IN

GRID ENVIRONMENTS

Relational models provide a good foundation for understanding the development

and evolution of data management in grid environments. However, the grid requires

a fundamentally new paradigm, and so the foundation becomes to some extent less

interesting as one scales the problem out.

Anatomy of the comparison is as follows. There are three functional tiers:

language interface, data management engine, and resource management engine.

. Language Interface. This consists of a set of tools that enable application

developers to control, transact, and manage data organized and managed by

68 RELATIONAL DATA MANAGEMENT



the technology. This typically includes language-specific APIs as well as entire

language sets that address the domain (ANSI-SQL).

. Data Management Engine. This provides an organizational methodology for

handling data within the store. Each type of data management engine can

have unique traits, concepts, or objects (relational, time-series, hybrid, etc.).

. Resource Management Engine. This engine manages the mapping between

logical organization and data sets, and the physical location (storage) onto

which those data sets map. Resource management engines can include raw

partition managers, shared memory managers, and flat file managers.

Analysis of the Functional Tiers

Language Interface. As with relational technologies, data management in grid

computing requires a language interface component. The language interface can

be specific to a type of language or can be a generic input spec similar to XML.

Application developers use the language interface to specify particular objects as

data-grid-aware, and also manipulate them within the data grid context. The data

grid needs to know particular aspects of the object structure in order to properly

distribute objects within a data grid. This knowledge is a key difference between

relational and grid-based language interfaces.

Data Management Engines. Data management engines within a grid provide a set

of functionalities similar to those provided by relational management engines in

relational data management systems. Key functionality of engines includes

. Data regionalization

. Data synchronization policy

. Data transactional policy

. Coordination of task scheduling to data locality

. Event notification policy

. Data load policy

Resource Management Engines. Resource management engines—within data grid

environments—provide the core transport and caching facilities. As such, each type

of engine provides a specifically different set of functionalities, which directly

reflects on the overall functionality of a data grid. There are two distinct types of

resource management engines: distributed and replicated. Within these categories,

certain engines also support shared memory, memory-mapped files, and rela-

tional-database-based backing storage.

. Distributed Resource Managers. Distributed resource managers enable the

spanning of multiple memory domains via either a peer-to-peer or a

replicate-as-needed mechanism. These managers scale better toward problems

PARALLELS TO DATA MANAGEMENT IN GRID ENVIRONMENTS 69



of large memory requirements with reasonable latency and/or access time

requirements. These managers also enable segments of the data grid to be

completely autonomous of one another, thereby facilitating greater robustness.

. Replicated Resource Managers. Replicated resource managers support a

“replicate everywhere” policy for all data. These managers maintain a “virtual

synchrony” of sorts among all the nodes and guarantee that every update is

provided to every peer. This mechanism typically uses a multicast transport,

and as such has some limitation in scaling. Additionally, the smallest memory

machine participating in the grid typically limits total data grid storage.

Engines Determine the Type of Data Grid

The engine of a relational database manages the physical resource: how the files are

organized, how they are managed, how they are stored or organized on the physical

disk, how disk fragmentation is minimized, and what is the optimal data placement

on the physical disk to minimize a spindle movement. These are all important

features, and as the technologies at the physical level have advanced, relational

databases have been able to take advantage of improvements due to the separation

of the engine and the higher-level data management.

With data grid, there is a similar separation of engine and data management.

Within data grids, however, the engine is not a single form as with relational data-

bases. Data grids can take any number of forms, each requiring a different engine to

support it. For example, in today’s enterprise, data exist in various heterogeneous

systems, and as a matter of practicality, disrupting those systems is not an option.

If the customer transaction database resides in a relational engine and the customer

information databases reside in a mainframe, it is reasonable to expect that the data

will remain in those respective permanent data stores. Some view data grids as a

virtualization of data to where they actually reside in the physical data stores.

The engine for this type of a data grid would be a metadictionary that formulates

and parses out specific query syntax to each target system and conversely receives

data from the data sources and unifies them back into a cohesive form.

Other types of data grids bring the physical data as close to the compute nodes of

the compute grid as possible for speed of access. This type of a data grid engine can

take the form of a distributed cache.

Data Management Features

With the introduction of relational database and client/server technologies, the main

focus was on how the engine works and less on data management. Today, it is the

reverse. The focus now is on data management and the data management supported

by relational database technology that we have become accustomed to and expect in

a data management system. Moving toward a new topology, these levels of data

management must be maintained. We need to look at some of the data manage-

ment features that are supported within relational databases, such as support for

70 RELATIONAL DATA MANAGEMENT



transactions, the ability to organize data in logical groupings like databases and

tables, the ability to bring data into the database from external sources and extract

data out to those sources, and to query data in an effective and efficient manner.

Data management in data grids must support much the same features of transact,

load, and query with the same level of confidence, from the user perspective, as

with a relational database. We will see that there are additional data management

issues particular to data grid in addition to these baseline features.

PARALLELS TO DATA MANAGEMENT IN GRID ENVIRONMENTS 71


